

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	TastyTopping 1.2.5 documentation

Welcome to TastyTopping’s documentation!

So, you’ve done all that hard work creating your REST API using Tastypie [http://django-tastypie.readthedocs.org/en/latest/] on the server-side -
why would you want to have to do it all again on the client-side?

TastyTopping creates objects that behave similarly to django models, using your
self-documenting TastyPie REST API to create the object’s attributes and
behaviour, in addition to retrieving the data. TastyTopping only needs 2 things
from you: The URL of the API, and the resource name.

As a brief example:

>>> factory = ResourceFactory('http://localhost/app_name/api/v1')
>>> ex = factory.example(field1='name', field2=10)
>>> ex.field3 = datetime.now()
>>> print ex.field4
1.234

Contents

	Getting Started

	Authentication

	QuerySets

	Nested Resources

	Optimization

	TastyTopping Cookbook

	API Documentation

Requirements

The following needs to be installed locally to run TastyTopping:

	Python 2.7+ or Python 3.3+

	requests [http://requests.readthedocs.org/en/latest/] >= 1.2.3

Tested with / against:

	django [https://docs.djangoproject.com/en/1.6/] >= 1.5.0

	django-tastypie [http://django-tastypie.readthedocs.org/en/latest/] >= 0.9.14

	requests [http://requests.readthedocs.org/en/latest/] >= 1.2.3

(see the tox.ini [https://github.com/cboelsen/tastytopping/blob/master/tox.ini] file for
more information).

Justification

Why another one? There are some other packages around that do something
similar, but none are the complete package:

	ORM [http://en.wikipedia.org/wiki/Object-relational_mapping]. A lot of
other packages use a C-style API, which involves passing a dict with your
data to their functions. TastyTopping wraps it all up in an ORM-style object,
which is more OO, more elegant, and more pythonic.

	Python3 support.

	Support for authentication.

	Support for nested resources.

	QuerySets!

	A thorough set of unit tests [https://github.com/cboelsen/tastytopping/blob/master/tests/tests.py].

	Development has stagnated (none of them have released in close to a year,
whereas tastypie has been releasing thick and fast).

	Creating this was FUN!

Examples

The examples shown here relate to the following TastyPie Resources:

class UserResource(ModelResource):
 class Meta:
 resource_name = 'user'
 queryset = User.objects.all()
 allowed_methods = ['get']
 authorization = Authorization()
 filtering = {
 'username': ALL,
 'id': ALL,
 }

class ExampleResource(models.ModelResource):
 created_by = fields.ForeignKey(UserResource, 'created_by', null=True)
 class Meta:
 resource_name = 'example'
 queryset = Example.objects.all()
 list_allowed_methods = ['get', 'post']
 detail_allowed_methods = ['get', 'post', 'put', 'delete']
 authentication = ApiKeyAuthentication()
 authorization = Authorization()
 filtering = {
 'title': ALL,
 'rating': ALL,
 'date': ALL,
 'created_by': ALL_WITH_RELATIONS,
 }
 ordering = ['rating', 'date']

The following example shows basic usage of the ORM, that will use GET, PUT,
POST, and DELETE methods on the API, using the
ResourceFactory

from datetime import datetime
from tastytopping import ResourceFactory, HTTPApiKeyAuth

if __name__ == "__main__":

 factory = ResourceFactory('http://example.api.com:666/test/api/v1/')
 auth = HTTPApiKeyAuth('username', '35632435657adf786c876e097f')
 factory.example.auth = auth

 new_resource = factory.example(title='A Title', rating=50)
 new_resource.date = datetime.now()
 new_resource.save()

 # Get any user from the list of users and set it to created_by:
 user = factory.user.all().first()
 new_resource.created_by = user
 # Get the new resource by its title:
 another_resource = factory.example.get(title='A Title')
 # Delete the new resource:
 new_resource.delete()
 # This will raise an exception since it's been deleted.
 print another_resource.date

Running The Tests

To install tastytopping:

git clone https://github.com/cboelsen/tastytopping
cd tastytopping
virtualenv env
. env/bin/activate # Or, on windows, env/Scripts/activate
pip install -U -r requirements.txt

And to run the tests:

Continued from above
pip install tox
tox

The tests are run against several environments with different versions of the
same packages, and are meant to pass all the tests at all times. If they aren’t
passing, it’s a bug [https://github.com/cboelsen/tastytopping/issues]!
The tests aren’t run against every combination of requests, django, and
tastypie supported, though, so there’s a small chance a bug might slip in
unnoticed.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TastyTopping 1.2.5 documentation

Getting Started

TastyTopping works together with a Tastypie API [http://django-tastypie.readthedocs.org/] to easily access data remotely over
HTTP. What makes TastyTopping so useful is its simplicity.

This tutorial is designed to work with the simple blog application found in
Tastypie’s tutorial [http://django-tastypie.readthedocs.org/en/latest/tutorial.html]. It also
assumes you have some knowledge of Tastypie, so if you’re not clear on Django,
Tastypie, etc., then you’ll probably want to look there first.

Installation

Installation is the usual simple affair with python nowadays:

	Download the dependencies:

	Python 2.7+ or Python 3.3+

	requests 1.2.3+

2. Either check out TastyTopping from github [https://github.com/cboelsen/tastytopping] or pull a release off
PyPI [https://pypi.python.org/pypi/TastyTopping/]:
pip install tastytopping.

Usage

The tastytopping.ResourceFactory class is how we will access our
API’s resources. To begin with, it needs the URL of our API, which it takes in
its constructor. After that, resources are accessed as members of the factory.
Following Tastypie’s simple blog application tutorial, let’s add an entry to
the blog:

from tastytopping import ResourceFactory
factory = ResourceFactory('http://127.0.0.1:8000/api/v1/')
Get the first user (we don't mind which it is).
existing_user = factory.user.all().first()
new_entry = factory.entry(
 user=existing_user,
 title='New blog entry',
 body='Some text for the blog entry.\n'
)
new_entry.save()

To edit the blog entry at a later date, we simply need to edit the body field:

new_entry.body += 'EDIT: Some more text!\n'
new_entry.save()

Be aware that like the get() method on Django models,
get() expects a single result to be
returned, and will raise an exception otherwise (see
NoResourcesExist and
MultipleResourcesReturned).

Now that we’ve made the new blog entry, you’ll probably notice it’s not a very
good blog entry - let’s get rid of it:

new_entry.delete()

Beyond The Basics

That’s all there is to the basics of TastyTopping. It’s simple, and hopefully
you’ll find it useful.

That said, there is more to learn, if you need to use more of Tastypie’s
features:

	QuerySets

	Authentication

	Nested Resources

	Optimization

	TastyTopping Cookbook

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TastyTopping 1.2.5 documentation

Authentication

TastyTopping supports Tastypie’s authentication types, and can be set per API
and per Resource. The auth classes all inherit from requests [http://requests.readthedocs.org/en/latest/user/authentication/]‘s AuthBase,
which means you can also use their excellent documentation.

For information on how authentication works in Tastypie, see their docs [http://django-tastypie.readthedocs.org/en/latest/authentication.html].

Usage

To use an authentication class is as simple as setting the ‘auth’ member on a
ResourceFactory or a
Resource. As an example, to
use API key authentication for all Resources by default:

from tastytopping import ResourceFactory, HTTPApiKeyAuth
factory = ResourceFactory('http://localhost:8000/myapp/api/v1/')
factory.auth = HTTPApiKeyAuth(username, api_key)

And to use digest authentication on a single resource (secret_resource):

from tastytopping import HTTPDigestAuth
factory.secret_resource.auth = HTTPDigestAuth(username, password)

There is also a class to use with django’s session authentication. This
requires that you set up a Resource in tastypie that is capable of returning
a CSRF token in a cookie, an example of which can be found in the django app
used by TastyTopping’s unit tests [https://github.com/cboelsen/tastytopping/blob/master/tests/testsite/testapp/api.py#L66].

Once a CSRF token has been returned in a cookie, telling a Resource to use
session auth is as simple as:

from tastytopping import HTTPSessionAuth
factory.some_resource.auth = HTTPSessionAuth()

The CSRF token will be taken from the cookies automatically. If the CSRF token
was obtained in another way, it’s also possible to pass the token into
HTTPSessionAuth‘s constructor.

Besides the aforementioned auth classes, TastyTopping also provides
HTTPBasicAuth. To use OAuth with your API,
the requests-oathlib [https://requests-oauthlib.readthedocs.org/en/latest/] package provides a
compatible authentication class.

Do It Yourself

If it turns out that you need to implemente your own authentication class on
the server-side, or you’re simply using one that isn’t included in
TastyTopping, then it’s always possible to roll your own authentication class.

For documentation on how to do just that, see the excellent docs provided by
requests on the subject [http://requests.readthedocs.org/en/latest/user/advanced/#custom-authentication].
For an example of how to make an authentication class that interacts with a
Tastypie Resource, see the HTTPApiKeyAuth class on github [https://github.com/cboelsen/tastytopping/blob/master/tastytopping/auth.py].

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TastyTopping 1.2.5 documentation

QuerySets

QuerySets are a way to contruct queries for a particular resource, while
minimising requests sent to the API. They function similarly to Django’s
QuerySets [https://docs.djangoproject.com/en/dev/ref/models/querysets/],
so if you’re comfortable with these you should be right at home with
TastyTopping’s QuerySets (differences will be highlighted as you go).

Like Django’s QuerySets, these will be evaluated only when needed - a term that
has a slightly different meaning here - in the following cases:

	Iteration. A QuerySet is iterable, and it executes its database query
the first time you iterate over it.

	Slicing / Indexing. Unlike with Django’s, TastyTopping’s QuerySets are
always evaluated when slicing or indexing.

	list(). Same warnings apply as with Django’s QuerySets - using
list() will iterate over the whole QuerySet and load it into memory.

	bool(). Testing a QuerySet in a boolean context, such as using
bool(), or, and or an if statement, will cause the query to
be executed.

Creation

To create a QuerySet, it’s usually easiest to
use one of the methods from Resource which
returns a QuerySet for that Resource:

	all() - return a QuerySet matching
all objects of a particular Resource.

	filter() - return a QuerySet
matching objects filtered by the given keyword args. The filters used are the
same as those passed to tastypie.

	none() - return an EmptyQuerySet. It
contains shortcuts to avoid hitting the API where necessary.

Usage

To demonstrate using QuerySets, we’re going to use the same API as in the
Getting Started section:

from tastytopping import ResourceFactory
factory = ResourceFactory('http://127.0.0.1:8000/api/v1/')

We’ve even already used a QuerySet as part of the tutorial:

existing_user = factory.user.all().first()

which is simple enough - it will get the first user (using the default
ordering). Using this existing user, we can query the API to see how many blog
entries this user has made:

blog_entries = factory.entry.filter(user=existing_user)
num_blog_entries = blog_entries.count()

To update the published date on all of these blog entries to the current date
in a single call:

from datetime import datetime
blog_entries.update(pub_date=datetime.now())

To delete all blog entries from before 2012:

factory.entry.filter(pub_date__lt=datetime(2012)).delete()

There’s a more convenient way to order the resources too; to order the blog
entries by reverse date:

factory.entry.all().order_by('-pub_date')

or to get the latest blog entry:

factory.entry.all().latest('pub_date')

There are some optimizations possible with QuerySets:

	Prefetching a QuerySet’s related resources.

To view all available methods, take a look at the API Documentation.

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TastyTopping 1.2.5 documentation

Nested Resources

Nested resources allow you to extend the functionality of a tastypie Resource
in a nice and simple way. It would make sense to access that nested resource on
the client-side in a nice and simple way too, which is exactly what
TastyTopping does. For information on how to create nested resources in
tastypie, check out tastypie’s docs [http://django-tastypie.readthedocs.org/en/latest/cookbook.html#nested-resources]
and TastyTopping’s unit test webapp [https://github.com/cboelsen/tastytopping/blob/master/tests/testsite/testapp/api.py].

Usage

A Resource’s nested resources are accessible via the ‘nested’ attribute. Any
attribute that accessed from ‘nested’ will be assumed to be a nested resource,
since there’s no standard way of accessing that information via a schema.

The examples below will illustrate what’s configured on the server side by
showing the contents of a Resource’s prepend_urls() method. Nested
resources can be appended to both the list view and detail view, so we’ll
go through a couple of examples of each.

List View

api.py on the server-side
def prepend_urls(self):
 return [
 url(
 r'^(?P<resource_name>{0})/add/(?P<num1>\d+)/(?P<num2>\d+){1}$'.format(self._meta.resource_name, trailing_slash()),
 self.wrap_view('calc_add'),
 name="api_calc_add",
),
]

So, in this (silly) example, we’ve got a nested resource at
<resource_name>/add/<num1>/<num2>/, which we’ll access with a GET:

client-side
factory = ResourceFactory('http://some-server.com/api/v1/')
my_sum = factory.some_resource.nested.add(2, 3).get()

This will send a GET request to /api/v1/some_resource/add/2/3/. A
NestedResource will accept any *args and just append them to the URL. So:

factory.some_resource.nested.add(2, 3, 4, 5).get()

will send a GET request to /api/v1/some_resource/add/2/3/4/5/. In this case
there’s no matching URL on the server side, and you’ll get an exception.

It’s also possible to send POST, PUT, PATCH, and DELETE requests. In these
instances it makes more sense to send any extra information as data:

api.py on the server-side
def prepend_urls(self):
 return [
 url(
 r'^(?P<resource_name>{0})/mult{1}$'.format(self._meta.resource_name, trailing_slash()),
 self.wrap_view('calc_mult'),
 name="api_calc_mult",
),
]

What you can’t see here is that calc_mult() accepts only POST requests, and
expects two numbers as part of a dict (for example {num1: 1, num2: 2}) in
the request’s data. With that in mind, sending a request to this nested
resource using TastyTopping looks like:

client-side
factory = ResourceFactory('http://some-server.com/api/v1/')
my_product = factory.some_resource.nested.mult(num1=2, num2=3).post()

This will send a POST request to /api/v1/some_resource/mult/, and include
the kwargs as the data dictionary.

Detail View

Now we’ll take a look at a nested resource as part of a Resource’s detail view.
On tastypie’s side, the matching regex will include the pk, which will be
passed to the called method:

api.py on the server-side
def prepend_urls(self):
 return [
 url(
 r'^(?P<resource_name>{0})/(?P<pk>\w[\w/-]*)/chained/getting/child{1}$'.format(self._meta.resource_name, trailing_slash()),
 self.wrap_view('get_child'),
 name="api_get_child",
),
]

get_child() expects no arguments, and will return a resource. To send a GET
request to this nested resource is as simple as:

client-side
factory = ResourceFactory('http://some-server.com/api/v1/')
a_resource = factory.some_resource.all().first()
child = a_resource.nested.chained.getting.child.get()
Or, if you find it more readable:
child = a_resource.nested.chained.getting('child').get()

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TastyTopping 1.2.5 documentation

Optimization

Because TastyTopping communicates over the network to a tastypie API,
operations are expensive. Care has been taken to only prod the API when needed,
but when dealing with thousands of resources a bit of extra help would be nice.
Thankfully, there are a few ways to optimize these network accesses.

Bulk operations (PATCH)

The PATCH REST method provides a nice way to for clients to create, update and
delete resources en masse, which tastypie has implemented. TastyTopping has
wrapped this functionality behind the
bulk() method, with convenience
methods provided for readability and ease of use
(create(),
update(),
delete(),
). To create multiple blogentries (from the tutorial):

factory.entry.create([
 {user=user1, title='Entry 1', body='Some text.\n'},
 {user=user1, title='Entry 2', body='More text.\n'},
 {user=user2, title='Entry 3', body='This text.\n'},
 {user=user1, title='Entry 4', body='... text.\n'},
])

Note that unlike when creating a resource normally, the
create() method does NOT return
anything. This means if you want to get any of the resources later, you’ll need
to get() them.

Using a QuerySet, it’s also possible to
update multiple Resources in just two requests:

queryset = factory.entry.filter(title__in=['Entry1', 'Entry2'])
queryset.update(user=user2)

Note that while the update only takes a single request, there is a previous
request that will GET the relevant objects to update (seeing as it’s not
possible to do it in one request like with SQL), because we need to know the
URIs of all relevant resources.

Lastly, it’s possible to delete multiple Resources in two requests (GET and
PATCH like with update()):

From the previous example.
queryset.delete()

The exception to delete() requiring two requests is when the QuerySet
contains all resources (ie. you used
all()). Then a DELETE is sent to the
requests list view.

If you really needed to remove every last possible request, you can also
combine all the previous calls into a single bulk() call:

entry3.user = user1
factory.entry.bulk(create=[
 {user=user1, title='Entry 5', body='Some text.\n'},
 {user=user1, title='Entry 6', body='More text.\n'},
],
 update=[entry3],
 delete=[entry4]
)

You might now be thinking that this sounds pretty good. You might even be
thinking that you’ll use this wherever possible. Well, there is a single,
potentially bad, downside: Because of the potentially large size of bulk
updates, the API will respond with a 202 before completing the request (see
wikipedia [http://en.wikipedia.org/wiki/List_of_HTTP_status_codes#2xx_Success],
and tastypie [http://django-tastypie.readthedocs.org/en/latest/interacting.html#bulk-operations]).
This means it’s possible for the request to fail without us knowing. However,
in the event that it does fail, all changes will be rolled back.

Update multiple fields

As a shortcut, it’s possible to update multiple fields in a single request
using update(), which will also update
the resource remotely (ie. effectively call
save()).

entry1.update(
 user=user2,
 title='Different title',
 body='Different text',
)

Prefetching a QuerySet’s related resources

For a QuerySet that returns a large number
of resources, it is sometimes more efficient to prefetch some, or all, of the
resources’ related resources. This can be achieved using a QuerySet’s
prefetch_related() method, which will
GET all resources of the given type in a single request and perform an
SQL-type ‘join’.

Take the example below, which will loop through all collections (a made-up
resource that contains many blog entries) and print the title of each blog
entry in the collection:

collection_queryset = factory.collection.all()
for collection in collection_queryset:
 for entry in collection.entries:
 print(entry.title)

In this case, there will be an initial GET request for the collections,
followed by a GET request for each entry in the collection. Ouch!

To get around this situation, you can call
prefetch_related() on the initial
QuerySet:

collection_queryset = factory.collection.all()
collection_queryset.prefetch_related('entries')
for collection in collection_queryset:
 for entry in collection.entries:
 print(entry.title)

This time, there will be a grand total of two GET requests: one for the
collections, and one for the entries.

There is a trade-off with this method, though, and that is that every resource
of the requested type will be prefetched. This means that if you only need to
prefetch a few resources, or there are a lot of resources of the requested
type, then it can also be detrimental to call
prefetch_related().

Server-side

There are several ways to reduce the number of requests sent to the API by
setting up your tastypie Resources (possibly) differently. As always, don’t use
these suggestions where they don’t make sense (ie. use your brain!).

max_limit

In a tastypie Resource, there is a member of the Meta class called
max_limit. Because TastyTopping only fetches the resources which were
queried, it’s advisable to set this to 0, to minimise requests sent (or at
least sufficiently large, if not unlimited). The limit member should still
be set to a reasonably small value (like the default of 20), since that is
used when iterating over a QuerySet.

always_return_data

Setting always_return_data = True will ensure a resource’s details are
returned from a POST request when creating it. If this is set to False,
TastyTopping needs to transmit another GET request when a Resource’s fields are
accessed.

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	TastyTopping 1.2.5 documentation

TastyTopping Cookbook

Extending Resources

Since the ResourceFactory returns classes
for a resource’s list view, it’s possible to inherit from these to extend their
functionality. For instance, if you want each Resource to keep track of their
lifetime on the client:

factory = ResourceFactory('http://localhost:8000/api/v1/')

class SomeResource(factory.some_resource):

 def __init__(self, *args, **kwargs):
 super(SomeResource, self).__init__(*args, **kwargs)
 # This is a field in the DB model:
 self.alive = True

 def __del__(self):
 self.alive = False
 self.save()

And then you can use the derived class as you would any class returned from the
ResourceFactory:

new_resource = SomeResource(field1='value1', field2=2).save()

Ignore MultipleResourcesReturned when creating a Resource

So, you’ve arrived here after getting a
MultipleResourcesReturned exception
when trying to create a new Resource (or maybe you’re just reading through the
docs)? This section goes through what happens when creating a Resource without
a unique field set, and what you can do about it.

Take a Resource whose only unique field is the auto-incrementing id field.
Assuming the Resource has always_return_data = False, then creating two
resources as below will create some problems:

factory.another_resource(name='Bob').save()
factory.another_resource(name='Bob').save()

The second save() will raise a
MultipleResourcesReturned exception. This
happens because TastyTopping will attempt to GET the newly created resource.
The response, however, will return two resources, which means TastyTopping
can’t be sure which one it created.

As suggested by the exception, one easy way around this, especially if you
don’t use the Resources after creating them, is to use
:create():

factory.another_resource.create([
 {'name': 'Bob'},
 {'name': 'Bob'},
])

No attempt will be made to GET the resources after POSTing them, so the problem
won’t be encountered.

The other solution presented by the exception is to explicitly ignore the
exception and GET the latest resource anyway:

factory.another_resource(name='Bob').save()
try:
 new_resource = factory.another_resource(name='Bob').save()
except MultipleResourcesReturned:
 new_resource = factory.another_resource.filter(name='Bob').latest()

Be warned, though, that this should only be done if you are SURE that no other
Resource was created in the meantime, either in another thread, another
process, or another machine.

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	TastyTopping 1.2.5 documentation

API Documentation

ResourceFactory

	
class tastytopping.ResourceFactory(api_url, verify=True)

	Create classes with which to access the API’s resources.

The resource classes are accessed as member variables on the factory object,
via a resource’s name. For example, with a resource at
http://localhost/app_name/api/v1/example_resource/, the ResourceFactory
will have a member variable called ‘example_resource’ returning a
Resource class (more specifically, a
subclass of it, specialised for the resource in question):

>>> factory = ResourceFactory('http://localhost/app_name/api/v1/')
>>> old_resource = factory.example_resource.get(name='bob')
>>> new_resource = factory.example_resource(name='new name')
>>> # And to see what resources are available:
>>> factory.resources
['example', 'another_resource', 'entry']

	Parameters:	
	api_url (str [http://docs.python.org/library/functions.html#str]) – The url of the API!

	verify (bool [http://docs.python.org/library/functions.html#bool]) – Sets whether SSL certificates for the API should be verified.

	Variables:	resources – (list) - The names of each
Resource this factory can create.

	
add_factory_dependency(factory)

	Add another ResourceFactory as a dependency.

If any of the Resources associated with this ResourceFactory (Api on
the tastypie side) have foreign keys to Resources associated with a
different ResourceFactory, then this ResourceFactory depends on the
other to create the Resources. In this case, you will need to pass the
other ResourceFactory into this method.

	Parameters:	factory (ResourceFactory) – The ResourceFactory that this depends on.

	
auth

	(AuthBase) - Update the auth on all resources accessed via this API. Any new Resources will have their auth set to this value too.

Resource

	
class tastytopping.resource.Resource(**kwargs)

	A base class to inherit from, to wrap a TastyPie resource.

To wrap a TastyPie resource, a class must be defined that inherits from
Resource. This derived class must specify, as a minimum, the class members
‘api_url’, and ‘resource_name’ (see below for descriptions).
ResourceFactory returns instances of this class from
its methods. Users are strongly encouraged to use these factory methods
instead of directly subclassing from Resource.

	Parameters:	kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Keyword arguments detailing the fields for the new resource.

	
classmethod all()

	Returns a QuerySet with no filters applied.

	Returns:	A new QuerySet.

	Return type:	QuerySet

	
classmethod bulk(create=None, update=None, delete=None)

	Create, update, and delete to multiple resources in a single request.

Note that this doesn’t return anything, so any created resources will
have to be retrieved with get() /
update() /
all(). Resource objects passed into
delete will be marked as deleted, so any attempt to use them afterwards
will raise an exception.

Because of the potentially large size of bulk updates, the API will
respond with a 202 before completing the request (see wikipedia [http://en.wikipedia.org/wiki/List_of_HTTP_status_codes#2xx_Success],
and tastypie [http://django-tastypie.readthedocs.org/en/latest/interacting.html#bulk-operations]).
This means it’s possible for the request to fail without us knowing.
So, while this method can be used for a sizeable optimization, there is
a pitfall: You have been warned!

	Parameters:	
	create (list [http://docs.python.org/library/functions.html#list]) – The dicts of fields for new resources.

	update (list [http://docs.python.org/library/functions.html#list]) – The Resource objects to update.

	delete (list [http://docs.python.org/library/functions.html#list]) – The Resource objects to delete.

	Raises:	ResourceDeleted

	
check_alive()

	Check that the Resource has not been deleted.

Note that this only checks locally, so if another client deletes the
resource originating from another
ResourceFactory, or a different PC,
it won’t be picked up.

	Raises:	ResourceDeleted

	
classmethod create(resources)

	Creates new resources for each dict given.

This method exists purely for convenience and readability - internally
it uses bulk().

	Parameters:	resources (list [http://docs.python.org/library/functions.html#list]) – A list of fields (dict) for new resources.

	
delete()

	Delete the object through the API.

Note that any attempt to use this object after calling delete will
result in an ResourceDeleted exception.

	Raises:	ResourceDeleted

	
fields()

	Return the fields according to the API.

	Returns:	The resource’s fields as {name (str): value (object)}.

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
classmethod filter(**kwargs)

	Return a QuerySet, with the given filters applied.

	Parameters:	kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Keywors arguments to filter the search.

	Returns:	A new QuerySet.

	Return type:	QuerySet

	
classmethod get(**kwargs)

	Return an existing object via the API.

	Parameters:	kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Keywors arguments to filter the search.

	Returns:	The resource identified by the kwargs.

	Return type:	Resource

	Raises:	NoResourcesExist,
MultipleResourcesReturned

	
classmethod none()

	Return an EmptyQuerySet object.

	Returns:	A new QuerySet.

	Return type:	QuerySet

	
refresh()

	Retrieve the latest values from the API with the next member access.

	
save()

	Saves a resource back to the API.

	Raises:	ResourceDeleted

	
update(**kwargs)

	Set multiple fields’ values at once, and call
save().

	Parameters:	kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – The fields to update as keyword arguments.

	
uri()

	Return the resource_uri for this object.

	Returns:	resource_uri

	Return type:	str [http://docs.python.org/library/functions.html#str]

	Raises:	ResourceHasNoUri

QuerySet

	
class tastytopping.queryset.QuerySet(resource, **kwargs)

	Allows for easier querying of resources while reducing API access.

The API and function are very similar to Django’s
QuerySet [https://docs.djangoproject.com/en/dev/ref/models/querysets/]
class. There are a few differences: slicing this QuerySet will always
evaluate the query and return a list; and this QuerySet accepts negative
slices/indices [1].

Note that you normally wouldn’t instantiate QuerySets yourself; you’d be
using a Resource’s filter(),
all(),
none(),
get() methods to create a QuerySet.

A quick example:

These will not evaluate the query (ie. hit the API):
some_resources_50_100 = SomeResource.filter(rating__gt=50, rating__lt=100)
some_resources_ordered = some_resources_50_100.order_by('rating')

These will evaluate the query:
first_resource_above_50 = some_resources_ordered.first()
arbitrary_resource_between_50_and_100 = some_resources_ordered[5]
all_resources_between_50_and_100 = list(some_resources_ordered)
every_third_resource_between_100_and_50 = some_resources_ordered[::-3]

	[1]	Using negative slices/indices will result in more requests to the API, as
the QuerySet needs to find the number of resources this query matches (using
count()).

	
all()

	Returns a copy of this QuerySet.

	Returns:	A new QuerySet.

	Return type:	QuerySet

	
count()

	Return the number of records for this resource.

	Parameters:	kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Keywors arguments to filter the search.

	Returns:	The number of records for this resource.

	Return type:	int [http://docs.python.org/library/functions.html#int]

	
delete()

	Delete every Resource filtered by this query.

Note that there is an optimization when calling delete() on a full
QuerySet (ie. one without filters). So:

this will be quicker:
Resource.all().filter()
than this:
Resource.filter(id__gt=0).filter()

	
earliest(field_name)

	Works otherwise like latest()
except the direction is changed.

	
exists()

	Returns whether this query matches any resources.

	Returns:	True if any resources match, otherwise False.

	Return type:	bool [http://docs.python.org/library/functions.html#bool]

	
filter(**kwargs)

	Return a new QuerySet, with the given filters additionally applied.

	Parameters:	kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Keywors arguments to filter the search.

	Returns:	A new QuerySet.

	Return type:	QuerySet

	
first()

	Return the first resource from the query.

	Returns:	The first Resource, or None if the QuerySet is empty.

	Return type:	Resource

	
get(**kwargs)

	Return an existing object via the API.

	Parameters:	kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – Keywors arguments to filter the search.

	Returns:	The resource identified by the kwargs.

	Return type:	Resource

	Raises:	NoResourcesExist,
MultipleResourcesReturned

	
iterator()

	Returns an iterator to the QuerySet’s results.

Evaluates the QuerySet (by performing the query) and returns an
iterator over the results. A QuerySet typically caches its results
internally so that repeated evaluations do not result in additional
queries. In contrast, iterator() will read results directly, without
doing any caching at the QuerySet level (internally, the default
iterator calls iterator() and caches the return value). For a QuerySet
which returns a large number of objects that you only need to access
once, this can result in better performance and a significant reduction
in memory.

Note that using iterator() on a QuerySet which has already been
evaluated will force it to evaluate again, repeating the query.

	Returns:	An iterator to the QuerySet’s results.

	Return type:	iterator object

	
last()

	Works like first(), but returns
the last resource.

	
latest(field_name)

	Returns the latest resource, by date, using the ‘field_name’
provided as the date field.

Note that earliest() and
latest() exist purely for
convenience and readability.

	Parameters:	field_name (str [http://docs.python.org/library/functions.html#str]) – The name of the field to order the resources by.

	Returns:	The latest resource, by date.

	Return type:	Resource

	Raises:	NoResourcesExist

	
none()

	Return an EmptyQuerySet object.

	
order_by(*args)

	Order the query’s result according to the fields given.

The first field’s order will be most important, with the importance
decending thereafter. Calling this method multiple times will achieve
the same. For example, the following are equivalent:

query = query.order_by('path', 'content')
Is equivalent to:
query = query.order_by('path')
query = query.order_by('content')

	Parameters:	args (tuple [http://docs.python.org/library/functions.html#tuple]) – The fields according to which to order the Resources.

	Returns:	A new QuerySet.

	Return type:	QuerySet

	
prefetch_related(*args)

	Returns a QuerySet that will automatically retrieve, in a single
batch, related objects for each of the specified lookups.

This method simulates an SQL ‘join’ and including the fields of the
related object, except that it does a separate lookup for each
relationship and does the ‘joining’ in Python.

It will check that the related field hasn’t already been ‘joined’ by
setting ‘full=True’ in the Resource’s field in tastypie.

Take note that this method will fetch all the resources of all the
given fields to do the ‘joining’, so it only makes sense for QuerySets
that will return a large nunmber of resources. Even then, watch the
memory usage!

	Parameters:	args (tuple [http://docs.python.org/library/functions.html#tuple]) – The fields to prefetch.

	Returns:	A new QuerySet.

	Return type:	QuerySet

	
reverse()

	Reverse the order of the Resources returned from the QuerySet.

Calling reverse() on an alerady-reversed QuerySet restores the original
order of Resources.

Evaluating a QuerySet that is reversed but has no order will result in
a OrderByRequiredForReverse
exception being raised. So, ensure you call
order_by() on any reversed
QuerySet.

	Returns:	A new QuerySet.

	Return type:	QuerySet

	
update(**kwargs)

	Updates all resources matching this query with the given fields.

This method provides a large optimization to updating each resource
individually: This method will only make 2 API calls per thousand
resources.

	Parameters:	kwargs (dict [http://docs.python.org/library/stdtypes.html#dict]) – The fields to update: {field_name: field_value, ...}

Authentications

	
class tastytopping.auth.AuthBase[source]

	Base class that all auth implementations derive from

	
class tastytopping.auth.HTTPApiKeyAuth(username, key)

	Use TastyPie’s ApiKey authentication when communicating with the API.

	
class tastytopping.auth.HTTPSessionAuth(csrf_token=None)

	Use Django’s Session authentication when communicating with the API.

The CSRF token can either be passed in on construction, or it will be
automatically taken from the session’s cookies. If no CSRF token can be
found, a MissingCsrfTokenInCookies
exception will be raised.

	
extract_csrf_token(cookies)

	Get the CSRF token given a session’s cookies.

	Parameters:	cookies (CookieJar [http://docs.python.org/2/library/cookielib.html#cookielib.CookieJar]) – A session’s cookies, one of which should contain the CSRF token.

	Raises:	MissingCsrfTokenInCookies

	
class tastytopping.auth.HTTPBasicAuth(username, password)[source]

	Attaches HTTP Basic Authentication to the given Request object.

	
class tastytopping.auth.HTTPDigestAuth(username, password)[source]

	Attaches HTTP Digest Authentication to the given Request object.

	
build_digest_header(method, url)[source]

	

	
handle_401(r, **kwargs)[source]

	Takes the given response and tries digest-auth, if needed.

	
handle_redirect(r, **kwargs)[source]

	Reset num_401_calls counter on redirects.

Exceptions

	
exception tastytopping.exceptions.BadUri

	Raised when the URI given does not belong to the API.

	
exception tastytopping.exceptions.CannotConnectToAddress

	Raised when no connection was possible at the given address.

	
exception tastytopping.exceptions.CreatedResourceNotFound

	Raised when no resource can be found matching the resource created.

	
exception tastytopping.exceptions.ErrorResponse

	Raised when an error status is returned from the API.

	
exception tastytopping.exceptions.FieldNotInSchema

	Raised when a field should be part of the resource’s schema, but isn’t.

	
exception tastytopping.exceptions.FieldNotNullable

	Raised when attempting to set a field to None, when the API forbids it.

	
exception tastytopping.exceptions.FilterNotAllowedForField

	Raised when the filter used is not in the list of filters for the field in the API.

	
exception tastytopping.exceptions.IncorrectNestedResourceArgs

	Raised when failing to GET a nested resource.

This is caused by tastypie raising a NotFound error in a 202 response. The
cause is (almost always) an incorrect number of args to the method.

	
exception tastytopping.exceptions.IncorrectNestedResourceKwargs

	Raised when failing to GET a nested resource.

Specifically, a MultiValueDictKeyError was raised in the nested resource.
Since kwargs should have been passed to the Resource method, which
the nested resource should be retrieving from the request.GET dict, it is
assumed that kwargs were missing.

	
exception tastytopping.exceptions.InvalidFieldName

	Raised when a field name will cause unexpected behaviour.

For instance, if a field is called ‘limit’, or ‘order_by’, it won’t be
possible to order or limit the search results.

	
exception tastytopping.exceptions.InvalidFieldValue

	Raised when a field has been passed the wrong type.

	
exception tastytopping.exceptions.MissingCsrfTokenInCookies

	Raised when no CSRF token could be found in a session’s cookies.

This exception normally occurs when no CSRF token was passed to a
HTTPSessionAuth object and there was no user authentication prior (which
returned a CSRF token).

	
exception tastytopping.exceptions.MultipleResourcesReturned

	Raised when more than one resource was found where only one was expected.

	
exception tastytopping.exceptions.NoDefaultValueInSchema

	Raised when a field has no default value, but the user asked for one.

Note that this can happen if you haven’t yet saved a Resource, and you’re
using a field that you haven’t provided a value for. For instance:

>>> res = factory.test_resource(path='test/path')
>>> res.rating # Exception raised if rating has no default value.

	
exception tastytopping.exceptions.NoFiltersInSchema

	Raised when the resource has no filters listed in the schema.

	
exception tastytopping.exceptions.NoResourcesExist

	Raised when getting resources, but none were found.

	
exception tastytopping.exceptions.NoUniqueFilterableFields

	Raised when the object has no fields with unique values to filter on.

	
exception tastytopping.exceptions.OrderByRequiredForReverse

	Raised by QuerySet when attempting to reverse a query without an order.

This exception will be raised when attempting to evaluate a QuerySet that
should be reversed (ie. reverse() has been called at least once), but does
not have an order.

	
exception tastytopping.exceptions.PrettyException

	Ensure the JSON dicts fed into the exceptions are formatted nicely.

	
exception tastytopping.exceptions.ReadOnlyField

	Raised when attempting to update a read-only field.

	
exception tastytopping.exceptions.ResourceDeleted

	Raised when attempting to use a deleted resource.

	
exception tastytopping.exceptions.ResourceHasNoUri

	Raised when trying to use a not-yet-created Resource’s uri().

This can almost always be solved by saving the Resource first.

	
exception tastytopping.exceptions.RestMethodNotAllowed

	Raised when the API does not allow a certain REST method (get/post/put/delete).

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	TastyTopping 1.2.5 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tastytopping	

 	
 	
 tastytopping.auth	

 	
 	
 tastytopping.exceptions	

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	TastyTopping 1.2.5 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	

 	add_factory_dependency() (tastytopping.ResourceFactory method)

 	all() (tastytopping.queryset.QuerySet method)

 	

 	(tastytopping.resource.Resource class method)

 	

 	auth (tastytopping.ResourceFactory attribute)

 	AuthBase (class in tastytopping.auth)

B

 	

 	BadUri

 	build_digest_header() (tastytopping.auth.HTTPDigestAuth method)

 	

 	bulk() (tastytopping.resource.Resource class method)

C

 	

 	CannotConnectToAddress

 	check_alive() (tastytopping.resource.Resource method)

 	count() (tastytopping.queryset.QuerySet method)

 	

 	create() (tastytopping.resource.Resource class method)

 	CreatedResourceNotFound

D

 	

 	delete() (tastytopping.queryset.QuerySet method)

 	

 	(tastytopping.resource.Resource method)

E

 	

 	earliest() (tastytopping.queryset.QuerySet method)

 	ErrorResponse

 	

 	exists() (tastytopping.queryset.QuerySet method)

 	extract_csrf_token() (tastytopping.auth.HTTPSessionAuth method)

F

 	

 	FieldNotInSchema

 	FieldNotNullable

 	fields() (tastytopping.resource.Resource method)

 	

 	filter() (tastytopping.queryset.QuerySet method)

 	

 	(tastytopping.resource.Resource class method)

 	FilterNotAllowedForField

 	first() (tastytopping.queryset.QuerySet method)

G

 	

 	get() (tastytopping.queryset.QuerySet method)

 	

 	(tastytopping.resource.Resource class method)

H

 	

 	handle_401() (tastytopping.auth.HTTPDigestAuth method)

 	handle_redirect() (tastytopping.auth.HTTPDigestAuth method)

 	HTTPApiKeyAuth (class in tastytopping.auth)

 	

 	HTTPBasicAuth (class in tastytopping.auth)

 	HTTPDigestAuth (class in tastytopping.auth)

 	HTTPSessionAuth (class in tastytopping.auth)

I

 	

 	IncorrectNestedResourceArgs

 	IncorrectNestedResourceKwargs

 	InvalidFieldName

 	

 	InvalidFieldValue

 	iterator() (tastytopping.queryset.QuerySet method)

L

 	

 	last() (tastytopping.queryset.QuerySet method)

 	

 	latest() (tastytopping.queryset.QuerySet method)

M

 	

 	MissingCsrfTokenInCookies

 	

 	MultipleResourcesReturned

N

 	

 	NoDefaultValueInSchema

 	NoFiltersInSchema

 	none() (tastytopping.queryset.QuerySet method)

 	

 	(tastytopping.resource.Resource class method)

 	

 	NoResourcesExist

 	NoUniqueFilterableFields

O

 	

 	order_by() (tastytopping.queryset.QuerySet method)

 	

 	OrderByRequiredForReverse

P

 	

 	prefetch_related() (tastytopping.queryset.QuerySet method)

 	

 	PrettyException

Q

 	

 	QuerySet (class in tastytopping.queryset)

R

 	

 	ReadOnlyField

 	refresh() (tastytopping.resource.Resource method)

 	Resource (class in tastytopping.resource)

 	ResourceDeleted

 	

 	ResourceFactory (class in tastytopping)

 	ResourceHasNoUri

 	RestMethodNotAllowed

 	reverse() (tastytopping.queryset.QuerySet method)

S

 	

 	save() (tastytopping.resource.Resource method)

T

 	

 	tastytopping.auth (module)

 	

 	tastytopping.exceptions (module)

U

 	

 	update() (tastytopping.queryset.QuerySet method)

 	

 	(tastytopping.resource.Resource method)

 	

 	uri() (tastytopping.resource.Resource method)

 Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/up.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		TastyTopping 1.2.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Christian Boelsen.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/file.png

_static/minus.png

_modules/requests/auth.html

 Navigation

 		
 index

 		
 modules |

 		TastyTopping 1.2.5 documentation »

 		Module code »

 Source code for requests.auth

-*- coding: utf-8 -*-

"""
requests.auth
~~~~~~~~~~~~~

This module contains the authentication handlers for Requests.
"""

import os
import re
import time
import hashlib

from base64 import b64encode

from .compat import urlparse, str
from .cookies import extract_cookies_to_jar
from .utils import parse_dict_header, to_native_string
from .status_codes import codes

CONTENT_TYPE_FORM_URLENCODED = 'application/x-www-form-urlencoded'
CONTENT_TYPE_MULTI_PART = 'multipart/form-data'


def _basic_auth_str(username, password):
    """Returns a Basic Auth string."""

    authstr = 'Basic ' + to_native_string(
        b64encode(('%s:%s' % (username, password)).encode('latin1')).strip()
    )

    return authstr


[docs]class AuthBase(object):
    """Base class that all auth implementations derive from"""

    def __call__(self, r):
        raise NotImplementedError('Auth hooks must be callable.')



[docs]class HTTPBasicAuth(AuthBase):
    """Attaches HTTP Basic Authentication to the given Request object."""
    def __init__(self, username, password):
        self.username = username
        self.password = password

    def __call__(self, r):
        r.headers['Authorization'] = _basic_auth_str(self.username, self.password)
        return r



class HTTPProxyAuth(HTTPBasicAuth):
    """Attaches HTTP Proxy Authentication to a given Request object."""
    def __call__(self, r):
        r.headers['Proxy-Authorization'] = _basic_auth_str(self.username, self.password)
        return r


[docs]class HTTPDigestAuth(AuthBase):
    """Attaches HTTP Digest Authentication to the given Request object."""
    def __init__(self, username, password):
        self.username = username
        self.password = password
        self.last_nonce = ''
        self.nonce_count = 0
        self.chal = {}
        self.pos = None
        self.num_401_calls = 1

[docs]    def build_digest_header(self, method, url):

        realm = self.chal['realm']
        nonce = self.chal['nonce']
        qop = self.chal.get('qop')
        algorithm = self.chal.get('algorithm')
        opaque = self.chal.get('opaque')

        if algorithm is None:
            _algorithm = 'MD5'
        else:
            _algorithm = algorithm.upper()
        # lambdas assume digest modules are imported at the top level
        if _algorithm == 'MD5' or _algorithm == 'MD5-SESS':
            def md5_utf8(x):
                if isinstance(x, str):
                    x = x.encode('utf-8')
                return hashlib.md5(x).hexdigest()
            hash_utf8 = md5_utf8
        elif _algorithm == 'SHA':
            def sha_utf8(x):
                if isinstance(x, str):
                    x = x.encode('utf-8')
                return hashlib.sha1(x).hexdigest()
            hash_utf8 = sha_utf8

        KD = lambda s, d: hash_utf8("%s:%s" % (s, d))

        if hash_utf8 is None:
            return None

        # XXX not implemented yet
        entdig = None
        p_parsed = urlparse(url)
        #: path is request-uri defined in RFC 2616 which should not be empty
        path = p_parsed.path or "/"
        if p_parsed.query:
            path += '?' + p_parsed.query

        A1 = '%s:%s:%s' % (self.username, realm, self.password)
        A2 = '%s:%s' % (method, path)

        HA1 = hash_utf8(A1)
        HA2 = hash_utf8(A2)

        if nonce == self.last_nonce:
            self.nonce_count += 1
        else:
            self.nonce_count = 1
        ncvalue = '%08x' % self.nonce_count
        s = str(self.nonce_count).encode('utf-8')
        s += nonce.encode('utf-8')
        s += time.ctime().encode('utf-8')
        s += os.urandom(8)

        cnonce = (hashlib.sha1(s).hexdigest()[:16])
        if _algorithm == 'MD5-SESS':
            HA1 = hash_utf8('%s:%s:%s' % (HA1, nonce, cnonce))

        if qop is None:
            respdig = KD(HA1, "%s:%s" % (nonce, HA2))
        elif qop == 'auth' or 'auth' in qop.split(','):
            noncebit = "%s:%s:%s:%s:%s" % (
                nonce, ncvalue, cnonce, 'auth', HA2
                )
            respdig = KD(HA1, noncebit)
        else:
            # XXX handle auth-int.
            return None

        self.last_nonce = nonce

        # XXX should the partial digests be encoded too?
        base = 'username="%s", realm="%s", nonce="%s", uri="%s", ' \
               'response="%s"' % (self.username, realm, nonce, path, respdig)
        if opaque:
            base += ', opaque="%s"' % opaque
        if algorithm:
            base += ', algorithm="%s"' % algorithm
        if entdig:
            base += ', digest="%s"' % entdig
        if qop:
            base += ', qop="auth", nc=%s, cnonce="%s"' % (ncvalue, cnonce)

        return 'Digest %s' % (base)


[docs]    def handle_redirect(self, r, **kwargs):
        """Reset num_401_calls counter on redirects."""
        if r.is_redirect:
            self.num_401_calls = 1


[docs]    def handle_401(self, r, **kwargs):
        """Takes the given response and tries digest-auth, if needed."""

        if self.pos is not None:
            # Rewind the file position indicator of the body to where
            # it was to resend the request.
            r.request.body.seek(self.pos)
        num_401_calls = getattr(self, 'num_401_calls', 1)
        s_auth = r.headers.get('www-authenticate', '')

        if 'digest' in s_auth.lower() and num_401_calls < 2:

            self.num_401_calls += 1
            pat = re.compile(r'digest ', flags=re.IGNORECASE)
            self.chal = parse_dict_header(pat.sub('', s_auth, count=1))

            # Consume content and release the original connection
            # to allow our new request to reuse the same one.
            r.content
            r.raw.release_conn()
            prep = r.request.copy()
            extract_cookies_to_jar(prep._cookies, r.request, r.raw)
            prep.prepare_cookies(prep._cookies)

            prep.headers['Authorization'] = self.build_digest_header(
                prep.method, prep.url)
            _r = r.connection.send(prep, **kwargs)
            _r.history.append(r)
            _r.request = prep

            return _r

        self.num_401_calls = 1
        return r


    def __call__(self, r):
        # If we have a saved nonce, skip the 401
        if self.last_nonce:
            r.headers['Authorization'] = self.build_digest_header(r.method, r.url)
        try:
            self.pos = r.body.tell()
        except AttributeError:
            # In the case of HTTPDigestAuth being reused and the body of
            # the previous request was a file-like object, pos has the
            # file position of the previous body. Ensure it's set to
            # None.
            self.pos = None
        r.register_hook('response', self.handle_401)
        r.register_hook('response', self.handle_redirect)
        return r






          

      

      

    


    
        © Copyright 2013, Christian Boelsen.
      Created using Sphinx 1.3.1.
    

  

_static/down.png





_modules/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		TastyTopping 1.2.5 documentation »

 
      


    


    
      
          
            
  All modules for which code is available


		requests.auth


		tastytopping.auth


		tastytopping.exceptions


		tastytopping.factory


		tastytopping.queryset


		tastytopping.resource






          

      

      

    


    
        © Copyright 2013, Christian Boelsen.
      Created using Sphinx 1.3.1.
    

  

